Exploring the production, contributions and utilization of sea ice algae in DBO using IP₂₅ and other diatom biomarkers

Chelsea Wegner Koch

Highly Branched Isoprenoids

Sea Ice Associated Diatoms IP₂₅ Producers:

Pleurosigma stuxbergii var. rhomboides (a) Haslea crucigeroides (b) Haslea kjellmani (c) Haslea spicula (b – maybe) Pelagic Diatoms Known III Producers:

Rhizosolenia spp. Pleurosigma spp.

Belt et al. 2000, 2018

Internal Standard

Not found in marine sediments

Same mass to ion charge (m/z) as IP₂₅

Brown et al. 2014

Conditions for HBI Synthesis

Modified from Müller et al. 2011

$$H - print = \frac{HBI III}{\sum (IP_{25} + HBI II + HBI III)} x100$$

Applying HBI Biomarkers to the Arctic food web

HBI depositional patterns across DBO

20

40

60

80

100

20

40

60

80

100

Surface Sediment H-print (%)

Overall, two distinct regions of varying HBI proportions.

DBO 1-3 tends to be comprised of primarily pelagic HBI signal. Minimal IP₂₅ concentrations.

East-west gradients in DBO 3, transitional.

DBO 4-5 has a consistently strong sympagic signal. Elevated IP₂₅ concentrations.

Relationship with Satellite-derived Sea Ice Observations

2012-2017 Sea Ice Index Linear Regression **A** 100 Latitude (°N) 75 72.5 H-Print (%) 70.0 67.5 50 65.0 62.5 25 25 50 75 100 Spring Sea Ice Concentration (SpSIC %)

The relationship between H-print and April – June monthly mean sea ice concentrations was moderate p<0.001, R²=0.46, n=184

2016 AMJ spring sea ice concentrations from NSIDC

2015-16 Chukchi Ecosystem Observatory

C.W.Koch et al., in review

Ice Derived Organic Matter Uptake by Benthic Macrofauna – HLY18

Variation of ice-derived resources within feeding guilds

Variation of ice-derived resources within major taxa

Sympagic to Pelagic Ratio =
$$\frac{IP_{25} + HBI II}{HBI III}$$

- Stronger sea ice signal in diets of walrus harvested while foraging in the Chukchi Sea
- No difference between regions in 2012 – the record low sea ice year for the Arctic, including the Chukchi Sea but not the Bering Sea.

Sympagic to Pelagic Ratio =	$IP_{25} + HBI II$
	HBI III

DISTRIBUTED BIOLOGICAL OBSERVATORY

Thank you!

Lee Cooper, Jackie Grebmeier & Christina Goethel – UMCES Thomas Brown – Scottish Association for Marine Science Catherine Lalande – Amundsen Science, Université Laval Karen Frey – Clark University

All scientists involved with DBO cruises and data collection!